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Experiments on generation and transport of high current electron
beams in gases and piasmas excite interest in studying their stability,
which is raduced to solving a spectral houndary value problem for an
ordinary second-order differential equation for some equilibrium beam
configuration. The numerical technigue which best satisfies the objec-
tives of studying the beam stability and specific mathematical features
of the correspondent spectral problem is the method of parameter
evolution {MPE}. In this paper a general scheme of the MPE is given,
the evolution operator is derived for problems with smooth coefficients
and the numerical algorithm is discussed. The problem of the bifurca-
tions arising in the space of physical parameters is considered. An
algorithm for predicting the point of bifurcation of a finite order and
two algorithms for evolution across such a point are proposed. The
following configurations of charged particle beams are studied on
stability: a nonvortex tube electron beam in a longitudinal homogeneous
magnetic field and radial electric field; and an isorotational vortex
charged particle beam without the drift approximation. ¢ 1994 Acadernic
Piass, ine,

0. INTRODUCTION

Experiments on gencration and transport of high current
clectron beams in gases and plasmas excited interest in
studying their stability. The results may also prove useful in
various fields such as the generation of microwaves,
conirolled thermonuclear fusion, collective acccleration,
powerful gas laser pumping, plasma—chemical reaclor
pumping, plasma heating by meins of collective instabifitics
ind others [1-37].

Generating electron beams of different configurations
with given parameters is a separate problem of applied
science—static electron optics [4]. The generation system
consists of a set of external electric and magnetic felds
including electrodes and conductors with currents required
to generate electron beams of given configuration. We are
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interested mainly in propagation of the beam through a
regular part of the generation system (the drift region),
where the forces of space charge pushing electrons asunder
and the cffects of transverse electron velocities are compen-
sated by focusing the forces of external electric and magnetic
fields.

Dynamically equilibrium configurations of electron
beams are not in thermodynamic equilibrium. There are
two sources of such nonequilibrium: (1) potential energy
concentrated in the proper Coulomb and magnetic fields of
the beam and (2) kinetic energy corresponding to the field
of a relative hydrodynamic beam velocity as a spatially
inhomogeneous flow [5].

It is known that thermodynamically nonequilibrium
states of dynamic equilibrium may prove to be unstable
[6-7]. Development of instabilities in the beam results in
violating its propagation or in its utfer destruction, which is
undesirable in many practical applications. In this connec-
tion the study of stationary electron beam stability is
necessary.

Instability due to the two above causes of thermodynamic
nonequilibrivm may be referred to a class of hydrodynamic
instabilities. The hydrodynamic (macroscopic) description
of charged particle beams is based on moments of the
Vlasov kinetic equation {the continuity and motion equa-
tions) and the Maxwell equations {8]. The equilibrium
beam stale may be found by solving a system of stationary
equaltions for a beam of specific configuration.

An analysis of stability of equilibrium states against small
perturbations is carried out in the framework of linear
theory in the following way, Hydrodynamic variables and
macroscopic fields are presented as a sum of their equi-
librium values and perturbations. Linearizing the non-
stationary equations near the equilibrium solution yields a
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system of equations describing the evolution of the pertur-
bations. If the latter grow in time or space the equilibrium
15 unstable.

Studying the stability of the equilibrium beam configura-
tion is usually reduced to solving a spectral boundary value
problem for a system of differential equations. Many elec-
tron beams of practical interest possess a certain symmetry,
for example, tape beams are plane-symmetrical while cylin-
drical beams are axisymmetric. For equilibrium configura-
tions we may reduce the electron motion in such beams to
a single dimension by a proper choice of the reference
system. In this case a corresponding spectral boundary
value problem is reduced to solving the ordinary second-
order differential equation

2
et S B ) u) =0,
1 du(r)
m‘ dr r=0=ro(j“!a)’ (01)
1 du(r) _
ulr) dr r=1_r1(2’a)’

where » € [(;1] is the real spatial variable; a € R is the real
problem parameter (a € R Is a set of real parameters); e C
is the complex eigenvalue; u(r)e W)[0; 1] is the complex-
valued ecigenfunction satisfying [§ |u(r)|®dr<oo and
fo iu'(r)|? dr < o0; A, B, Iy, I', are continuously differen-
tiated functions of their arguments.

The spectral parameter A describes the beam stability
against small perturbations in the form A4 .exp{iit}. If 4
takes real values in the space of physical parameters deter-
mining the beam geometry, external focusing fields, the kind
of perturbation, etc., the equilibrium under investigation is
stable. If in a certain range of parameters 2 takes complex
values, then the equilibriom is unstable and & = jIm 4| is an
increment of instability.

It is known that spectral boundary value problems of the
form {0.1) are solved analytically very rarely. Therefore, a
necessity arises in developing numerical techniques for their
solution.

Now a great variety of methods for solving spectral
problems are available. They may be divided into four large
categories [9]: shooting methods, difference methods,
methods of continuation, and approximation methods.
However, the problems arising in studying the hydro-
dynamic stability of charged particle beams pose high
demands on the efficiency of numerical codes.

The main objectives of studying the stability of beams are:

— tofind regions of stability and instability in the space
of physical parameters;

— 10 determine what perturbations have maximal
increments and thus are most dangerous;

— to obtain dependences of maximal increment on
beam geometry and other parameters;

— to work out practical recommendations on choosing
optimal stable configurations, conditions for the beam input
and confinement.

According to these objectives the spectral boundary value
problems of the form (0.1) are solved for the entire range of
parameter o variation rather than for its fixed value; i.e., the
evolution curves A(a) are calculated.

In addition, the problems of the form (0.1} have some
specific mathematical features that impose stringent
requirements on the choice of numerical technique:

1. The spectral boundary value problem {0.1) is not seli-
conjugate; ie., the eigenvalue i is complex while the etgen-
function u(r) is complex-valued; therefore the methods
oriented to solving self-conjugate problems cannot be used
for solving (0.1). When using shooting methods the hit
problem arises in the complex plane, which makes the
calculations more difficult.

2. The eigenvalue A is contained in the nonlinear form in
the coefficients and boundary conditions. As a rule, non-
linear problems are solved by iterational methods. To
calculate the evolution curve A{a} it is necessary to solve a
great number of problems of the same type. Using itera-
tional methods results in longer computational times;
therefore noniterational algorithms should be employed.

3. The problems are many-parametric; ie, by « we
mean a set of physical parameters {a,, .., «,}. Thus, it is
necessary to calculate a set of evolution curves {A(a,)}7_,
instead of only one A{x). Hence, numerical methods orien-
ted for solving only one problem are of low efficiency.

4. In the space of parameters there are bifurcations of
the spectrum determined by physics of the phenomenon
under investigation. Consequently on the evolution curve
Alat) the bifurcation points «* may appear such that 4 will
take on real values when a<a* (ie., the beam will be
stable), and A will have a complex value when a > a* (i.e.,
the beam will be unstable} or vice versa. Thus it is necessary
to investigate the bifurcation points using the chosen
numerical method. The numerical technique which best
satisfies most of the above requirements is the method of
parameter evolution (MPE) [10-127.

In Section I a general scheme of the MPE is given, the
theorem about convergence of the MPE is proved, the
evolution operator is derived for a problem with smooth
coefficients, and the numericat algorithm is discussed. The
problem of the bifurcations arising in the space of physical
parameters 1s considered in Section II, An algorithm for
predicting the points of bifurcation of finite order and two
algorithms for evolution across the points of bifurcation of
finite order are proposed.
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In Section I1I problems of charged particle beam stability
are studied by the method of parameter evolution. The
stability of a nonvortex tube electron beam in a longitudinal
homogeneous magnetic field and a radial electric field is
studied in Section 3.1. For the first time the stability of an
isorotational vortex charged particle beam has been studied
without the drift approximation in Section 3.2,

I. METHOD OF PARAMETER EVOLUTION FOR
NON-SELF-CONJUGATE SPECTRAL
BOUNDARY VALUE PROBLEMS

1.1. A General Scheme of the Method

Spectral boundary value problems of the form (0.1),
arising when the hydrodynamic stability of charged particle
beams is analysed, are a particular case of stationary
problems in mathematical physics. In terms of functional
analysis they may be formulated in the form

Fix,a)=0, (1.1)
where F: X x[0; 1] = ¥ is a nonlinear operator, X and Y
are the Banach spaces, xe X is the desired solution (for
example, in the problems of the form (0, 1) x = {4, u(r)}),
ae[0; 1] is the problem parameter.

As noted above, studying the solution x depending on the
parameter « over a whole range of its variation, ie., con-
structing the evolution curve x{a), is of practical interest.

On the one hand, it is necessary to carry ocut many-
variant calculations which requires high-efficiency algo-
rithms. On the other hand, solving a set of problems, which
are somewhat close in formulation, allows an enhancement
in the efficiency by using results obtained earlier. Numerical
methods based on such an approach are called continuation
methods [13].

At the present time the continuation methods have been
developed by using two approaches. The first approach,
called parameter discretization, implies that after intro-
ducing a grid in parameter :0 =2, <a, < -+« <a,=1 the
equation F(x, a;, ;} =0 is solved by means of an iterational
technique. An initial approximation at the point o, is
obtained by extrapolating solutions from «, o,_,,..
(Fig. 1a). Taking x{, | = x, as an initial approximation we
may correct the solution by using the Newton method:

xs+l 5 (aF('xs’ ai-o—l)

-1
—x— ) o, (12)
dx

The solution convergence for known conditions on F
is provided by continuity of x(«) and hitting x° into the
convergence region of Newtonian iterations [ 14].

The other approach, called the method of differentiation
with respect to parameter or the method of parameter
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FI1G. 1. Continuation methods: (a) Tterational methods; (b) Method

of differentiation with respect to parameter; (c) Method of parameter
evolution.

variation, is used when the operator dF(x, a)/0x is not
degenerated in a vicinity of solution x{a). By differentiating
(1.1) in parameter & we obtain the relation

dx

-

which in the literature is sometimes called the Davidenko
equation. Integration of (1.3) by the Euler scheme yields the
scheme of continuation,

F{x, a))_‘-aF(x, ) (13)

Ox dat

oot
aa ml’

Xigl =xf_(aF(x” al))] 'aF(x“ ai)‘ (1-4)

ox

where x,=x(a;), o, =, ., — o, {Fig. 1b).

At the first approach, choosing the initial approximation
x]. =x, and correcting the solution by the Newton
method, we have the error to be equal to O(da), which
requires a smaller step in a to provide convergence of
Newtonian iterations.

The accuracy of the scheme (1.4) is also O(da). The main
flaw of this scheme is the accumulation of errors in the
evolution of the parameter a.

In [15] the scheme (1.4} was used to obtain the initial
approximation at a,, ; and then the Newton scheme (1.2)
was used to make the solution more precise (the combined
scheme}. Under such an approach an initial error in evalua-
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tion of x?, | is O(da?), however, it requires at least twice the
computation of {(6F(x, a)/dx) ' for each «;, ;.

In general, evaluating (3F(x, a)/6x) ' requires long com-
putational times; so the necessity of its multiple computa-
tion considerably reduces the efficiency of the numerical
algorithm. Besides, the operator 0F(x, «)/0x may prove to
be degenerate at (x*, «*), which corresponds to the bifurca-
tion point on the evolution curve x(a). In this case we can-
not use the scheme (1.4}). Special algorithms need to be
developed for the evolution across the bifurcation points.
Thus, the high efficiency of the continuation methods may
only be achieved in a narrow class of problems.

One of the approaches that ensures such an efficiency is
the MPE [16-17]. To construct the continuation scheme
from point «, to point «; | for its use in MPE, see (Fig. Ic),
we should modify the problem {1.1) in the following way.
Let x; be its approximate solution, ie., F{x;, ;) % 0. On the
interval [ &;, a; , ; ] we give the modified family of equations:

x— a’:+l

( n r) s

A —&q

Fix,0)=F(x,0)—

e, a ] {1.5)

This family satisfies the following relations:

F(xis ;) =0,

- (1.6)
Flx, o )= F(x,a,,1)

By differentiating (1.5) with respect to a, we obtain the
scheme of continuation,
Xpo1 =X+ L{x,;, o) S, 4+ O, (1.7

on the interval [a,, «,, ], where L(x,, a;) is the operator of
evolution (OE) defined by

=[] .

where F, = F(x;, a,).
When computing the OE we simultaneously determine

the correction
oF!
Sx,= —| —| . F,

wasting no additional computational time. This correction
allows the determination of the solution for x, more
precisely at the point , by using the Newton method

(1.8)

%=X, + 0x, + O(da*).

Essentially the scheme (1.7)-(1.8) is the Euler scheme for
differential equation (1.3} with the modified function F{x, «)
of the form (1.5). As a consequence of (1.6) integration of
this equation by the Euler scheme begins without an initial
error. The accuracy of the value x,_ , obtained is determined
by the accuracy of the Euler method at the single integrating
step and is equal to O(da*). This fact is strictly proved
below.

Thus the continuation scheme in the MPE has a higher
order of accuracy than the scheme used in the parameter
discretization method and than the scheme used in the
method of parameter variation. As compared with the com-
bined scheme, the scheme (1.7)-(1.8) has the same order of
accuracy, but it requires calculating [8F/éx] ™' only once
per point of grid in «; i.e., this scheme i1s more economical.
Such efficiency is achieved by combination of the parameter
evolution (the term —(0F;/dx)~'.(8F;/da). da; in the
MPE continuation scheme (1.7}—(1.8)) with the Newton
correction (the term — (8F,/0x)~"-F)).

The convergence conditions of the difference solution
(1.7) to exact one are analogous to the conditions of known
theorems about the implicit function and about the con-
vergence of the Newton method. They are determined by
the following theorem.

THEOREM (About convergence of the MPE).
a solution of a functional equation

Let x(x) be

Fx(a), ) =0,

where ae[0; 1], xeX, F.Xx[0;1]=7Y is a Fréchet
differentiated nonlinear operator, X and Y are the Banach
spaces. Let Q= {x:||x—x(a)| < a} be the neighborhood of
the x{a) solution. Assume that the following conditions are
satisfied.

(1) |F(x,0)" ' <a,, Vxe,;

(2} NF(xy, ) — Flxy, ag) —
Fo(xa, )y — o)l S ay lx) — x5 ||F + a3 oy, —as]?,
X, €8, Vo, a,e[0;1];

(3) HFUx, ) T <a,, ¥xeQ,,;

(4) R,e82,, where %, is an initial value of desired numeri-
cal solution assigned with a some error.

Fxy, o5)(x; — x3) —
Vxl!

Then there exists such a value of a that for any fixed
ae[0; 1] the difference solution (1.7} would converge 1o a
precise one for da—0, ie, xy— x(a) for N— oo, where
du=afN, a;=i-da, i=1,2,..,N. The convergence rate
estimate is valid:
Ixn = x(@)| <4 - 6x> + g, (1.9)
where 0 < gy < (Beo)Y &4, 5= \ixo x(0)| + D |dx|, while
0< gn<(1/B) - (Bey)® for da=0; 4, B, D are constants.
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Proof. Expression (1.7) provides

oF,

. _F
dat

oF,
(x,.+1—xq)-a+5a. . (1.10)

From condition (2), taking o, = o, , 1, as = o, X, = x{t;, 1},
X, = x;, we have

dF, dF,
(x(a,-+1)—xf)-5;+5a-a= —F,4+¢ (LI
where
lell < ay [ x(o; 0 1) = x; 17 + a5 |Sa| % (1.12)

Subtracting (1.10} from (1.11) and due to condition (1) and
estimate (1.12) we have

x(a; 1) =X | €@ ay- “x(ar'-pl)*xruz'*'alas |5rx|2.

(1.13)
An inequality takes place:

(e, 1) = x; < xoe 1) — 2] + [lxe{a) — x|l (1.14)

From Equation (1.3) and conditions {1} and (3} of the
theorem an estimate follows:

2oy 1) = X2 )| < @yaq |0l (1.15)

Considering (1.14) and (1.15) the inequality (1.13) may be
written as

Ix(o; 1) = x| Sayas- {a,a, [a] + ||x(a,) — x|} 2
+a,a; |6al>. (1.16)
For do — O we have

[x(ot; 1) =%, | €B- \iX(fx.-)—X.-llz, where B=a,a,.

Therefrom it follows that

1 } ,
lxy = x@) 5 (B [Fo—x( O™ (1.17)

Then we may take in such a < 1/a, a, that
B |£,—x(0)|€B-a<l. (1.18)

Convergence of x,—x{a) for da—0 follows from

(1.17)-(1.18).

The convergence rate estimate comes from (1.16).

Denoting 4,=|x,—x(«;)|, 4Ad=a,a;, D=aya,, the
inequality (1.16) is rewritten as
A, €SB (D 6|+ 4,2+ A4 -|0a|2 (1.19)

Let us find such 4,,,, that for 4, > 4, the process would
diverge. It should satisfy the conditions 4,,,=4,=4,,
and the equation in the expression (1.19}):

1
Amaxzﬁ-(l —2BD |da| +\/1 —4B |dx|- (D + A |6a]))

=

wi—

We introduce the notation g,=A4,+ D |dua|; then (1.19) is
rewritten as

g1 SBel+C, (1.20)

where C'= A4 |6&|*>+ D |#x|. From (1.20) it follows that

£i+l “<~ (Bgmax) Er'+ C= gEi+ C,
(1.21)
Emax = Amax + D |dat].

Then the estimate for &, will be
en<BYey +(BY"'+ B 24 ...+ 1) C

Therefore substituting the expressions for ¢, and C and
using the definition of 4,,,, we have

RBN-—-2

~ B -1
A< (Beg)Veg+ A4 }5a|2+BC-T1——.

(1.22)

(1.22) and (1.17) testify to the validity of (1.9) estimate of
the initial data error relaxation rate.

Now we prove the second order of the method by |da|. To
make it we show that we have an inequality,

En S BY. E% . Pzw—n_l(ag) + BC?

A{BC-(BC---- -(BC+1)*+ 1P+ --- +1)*+C,
e e e T~

(N —2) times (AN —2)umes

(1.23)
where Pyx-n_,(&5) is a polynomial of (2!~ " —1) power
respectively to (e2). We apply the induction technique for

the proof. For N =1 we have

g <B'.g 1+C
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The inequality {1.23) is true, because 1 is the polynomial of
zero power with respect to any variable, and the second
term in (1.23) exists only for N>2. For N=2

£, < Bel+ C< B (Bea+2C) + BC* + C;

ie., {1.23)is also true. Let (1.23) be true for N =k&. Prove its
validity for either N=k + 1:

£y 1 S Bl C<B-{B* el Pyx-u_y(e5) + BC?

(BC-(BC- -+ - (BC+1)2+1)*+ .. +1)?
e e~

Tk —vumes & —2) times

+C+ G

Ere1 S BX Va5 {BF ey Pluon_(e3)

+2P2(&—|)_1(£g) X(BC2

(BC-{BC. .- (BC+1+1)*+ ... +1)?
+ Y} + BC?

(BC-(BC- -+ -(BC+ 1?17 4 .- +1)?
i_--(-l.(——_\l) timnes (k—1) times

+C (1.24)

Note that the polynomial 2 - P2.-1,_,{£3) is the polynomial
of power 2. (287 '— 1)+ 1=2%— 1. So (1.24) is rewritten as

£y 1 S B2 Py (e2) + BC?

(BC-(BC. .- (BC+1¥+ 12+ ... +1)
(k — 1} timnes W

+C.

Thus the (1.23) inequality is proved. Substituting ¢, and C
into (1.23) we have

Ay<BY g2 Pyvon (e} + BC?

(BC-(BC. - - (BC+ 1)+ 1)*+ ... +1)
+ A ||, (1.25)

The second term in the right side of (1.25) has the same
smallness order of [da| as C?, and C? ~ |dx| The validity
of the theorem is proved herein.

Hence, in the course of the evolution of the parameter o
an accumulated error relaxes to a certain level determined
by the size of the step in a. Thus within the framework of the
MPE, we may automatically choose the step in o in order to
provide an accuracy of the numerical solution not lower
than desired.

SBI/115/1-7

1.2. Evolution Operator for Problems with
Smooth Coefficients

The initial value problem

?=L(x, o), ae[0;1],
x (1.26)
%(0) = x,.

will be called the evolution problem, where L(x, «) is the
evolution operator. The problem (1.1) may be reduced to
{1.26) in some methods of continuation. At the fufictional
level the evolution operator in MPE has the form (L.8).
Now we shall construct the OE for the spectral boundary
value problem for ordinary differential equation, ODE, of
the second order in the form (0.1}

Note that the problem (0.1) is nonlinear with respect to
the eigenvector x = {4, u(r)} and the spectral parameter
which nonlinearly enters into the coefficients 4{4, «, r) and
B(A, a, r), and into the boundary conditions (A, ) and
(4, o). The problem under consideration is linear with
respect to the eigenfunction u(r). This means that if the
eigenvalue A is known then to calculate the eigenfunction
u(r) we should solve the linear boundary value problem.
Economical algorithms for solving such problems are con-
structed based upon the back substitution method [18].
One of these algorithms is considered in Section 1.3 and
used for calculating the eigenfunction u(r).

Thus, it is expedient to reduce the problem in the form
(0.1) to the evolution problem with respect to the spectral
parameter A rather than the whole eigenvector x = {4, u(r)}
and thus reduce the dimension of the respective evolution
problem [ 17].

By replacing the function w(r) in (0.1) by

1 du(r) 1
D(r)—u(r)- > +2A()L, a, F), (1.27)
we pass to the problem
dD
U | D2r)+ U @, r) =0,
dr
D(0)=Ty(A o) + 0.5 A(4, a, 0),
° (1.28)
D)= (A a}+0.5. A(4, a, 1),
where
1d
U(d, o, r)= —Ed—rfi(l, @, r)
i
—Z-Az(/l, o, F)+ B(Aa,r).  (1.29)
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Let us also introduce the function y(r) which is connected
with D(r) by the relation

1
o dr (1.30)

By differentiating (1.28) with respect to the parameter
we obtain an equation with respect to y(r) =dD(r)/dx,

dy(r)
r

+2-D(r)-y(r)+d—U(2.,a,r)=0, {1.31)
dn

which has the solution

0y 1
y(r)= Vi) »0)

@ e
yi(r) Jow(r)da(’a’r) 21'32)

From this, by involving the boundary conditions, we obtain
the expression for the evolution operator,

di LA, o)
i LA a)=

)—__.._

Lk (1.33)

where

L= G+ 35 (e D)

ar, 1 64 R
B Sl == W20
{35 w0} v70)
1 at

+ 2(ry —~ (A, o, r) dr, el al.

[y Gana,  yelia
(1.34)
Here substituting y=o and &/dy=08/0x, we obtain the
numerator L (4, a) of the OE. Analogously for y=4 and
8/0y = 0/3A4 we obtain the denominator L,(4, «) of the

OE (1.33).

In accordance with Section 1.1 relaxation properties are

introduced into OE (1.33)-(1.34) by means of Newton
correction, the specific form of which is given in Section 1.3,

1.3. Numerical Algorithm
We consider the numerical algorithm for solving the spec-
tral boundary value problem in the form (0.1) with smooth
coefficients. For simplicity we write down (0.1) in the form
' (r)+ U o, ) y(r)=0, re{0;1],
Y{(0)/(0) = Dy(4, a),
Y (A1) = @,(4, a),

(1.35)

where the function U(4, «, r) is connected with coefficients
Al{d, a,r) and (B(4,a,r} by the relation (1.29). The
boundary conditions are

Do, 0) = To{ i, a) + 0.5+ A4, o, 0);
@A, a)=T(i a) + 0.5 A(L a, 1);

and ¥(r) is the desired eigenfunction to within the multiplier
in the form C-exp{0.5-{; A(A, o, r'jdr'}, where C is an
arbitrary constant.

If for the given «; we know an approximate eigenvalue, 4,,
the problem (1.35} is linear with respect to y(r). The back
substitution method [19] is the most economical for
computing the approximate eigenfunction. We consider a
variant of this method [16].

Now we shall pass from the problem (1.35} to the
problem with respect to the logarithmic derivative of eigen-
function D{r) ='(r}/(r):

Diry+D¥r)+ U4, e, r)=0
D(0) = B4 4, a)
D(1)=@(4, a}.

(1.36)

Let the function P,(r) be the sclution of the Cauchy
problem with the initial condition at point r=0. Corre-
spondingly, D,(r) is the solution of the Cauchy problem
with the initial condition at r = 1. Since the eigenvalue 4, is
approximately known and there are errors of the difference
approximation, we have D, (r)# Dg(r). It is clear that the
eigenfunction y{#) obtained by solving the equation

y{(r)—=D(r)-y(r)=0 (1.37)
will best satisfy (1.35) if we take
DL(r)’ Ogrgr.n
Diny= .
O={oi  reren (138)

where the solution joint point, r,, is chosen from the condi-
tion
[A(r, ) =min |4(r)|
(0 1) (139)
A(r)=Dglr)— D [(r).

The function D{r) thus constructed satisfies (1.36)
everywhere on [(); 1] except at the joint point, r_. According
to the method of constructing the relaxation evolution
operator (Section 1.1) we consider the modified function
Up(hy o, 1):

Uy o, 1) = UL, 2, 1)+ A7) —L 8(r 1),

i LI

(1.40)

xelesa,1],



INVESTIGATION OF BEAM STABILITY 93

such that

Up Ay, r) = U4 o, 1)+ A(r)-8(r —r,),
Upddooy 0, Y =UlA o500, 1),

where &(r) is the delta function.
Then the relaxation evolution operator takes the form

A(r,) - 92(r,)

LA(;L:" ai) ) (ar'+ 1 C(,-)

L(h, 0y =LA, a;) + . (141)

The second term in the right-hand side of (1.41)
corresponds to the Newton correction in the OF (1.8).

Thus, the variant of the back substitution method used in
MPE consists of the integration of (1.36) from the segment
ends r =0 and r = 1 to the joint point, r,, i.c.,, calculation of
the function D(r) in the form (!.38}—direct move—and
integration of (1.37) from r, to the ends of segment [0; 1],
i, calculation of the eigenfunction y{r)-—back move.
Simultaneously we caiculate the operators L (4, a),
L.(A a), and the Newton correction, ie., the relaxation
evolution operator £{4,, «,).

Note that, by definition, the function D(r) is singular and
has a discontinuity of the second kind at the zeros of the
eigenfunction y(r). To calculate D{r} a nonlinear second-
order difference scheme was proposed in [ 20], which takes
inte account the singularity of this function. It has the form

D, (h7'-05.-U,-h)—05(U,+U,,. ) .
A,+¢e-sign A, (1.42)
A;=D,+(h]'=05-U;-h).

Di+l=

In{142Yh,=r, ,—r,(0=r <ry<--- <ry=1)while ¢ is
chosen empirically. For example, for the 48-digit BESM-6
computer it was chosen as ¢=10"%,

In order to avoid arbitrariness in the choice of & and to
eliminate another source of errors in calculating the func-
tion D the {ollowing approach has been developed (Fig. 2).
The function W = 1/D is introduced and the calculations are
made by using the scheme

Dy =F7'[D;-G,—05-(U;+ Uy 1), (D)
where
G,=h~'—05.U,-h, F,=D,+G,
if |P;|2 € 1, and the scheme
1+G, W,
Wi (W)

TG-05 W, (U+U,,)

otherwise.

o

fy

-
=
Iy
-
w
o
=
&
&
-
-

DW| D w D wilbD|w

L T F T FITLF
vi

1

0 LIPS

\y rz fs I3 [ rs [4

FIG. 2. Calculation arrangement.

The eigenfunction i is calculated by back substitution
from r=r, to points r =0 and r = 1. Since ¥ is determined
to within the constant multiplier, at the joint point it is put
equal to unity, e, Y{r)=1. Further calculations of the
eigenfunction are carried out in the following way.

At the back substitution from r =r_to r =0 we calculate
i by using the scheme

l!/i—\=lf’i/(hf—1 'Fi_;)s

if D, is determined by the scheme (D), and we use the
scheme

'1!/1'-1::('1[”" stl)/(hrfl 'Frel)

if D, is determined by the scheme ( W).
At the back substitution from ¥ =r, to r =1 we calculate
i by using the scheme

‘l’i+1 = _llbr'/(hi'Fi+l)
if D is determined by the scheme {D); otherwise,
l!’i+1= —('/’s’ Wl'+l)/(hi'Fi+l)'

The integrals in the operators L, and L; (1.34) are
calculated by the trapezoidal method. Thus, to determine
the OF the second-order schemes are used in all computa-
tions.

Evolution of the eigenvalue of 1 with respect to parameter
o is determined by the scheme

Ao =hi+ Lihy, ) - S, + O(802), (1.43)
where L(A,, «,} is described by formula (1.41). According to
Section 1.1 the scheme (1.43) is also of second-order
accuracy.
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Now we shall pass to dimensionless variables, choosing
the inner beam radius b, as the unit length and the cyclotron
frequency w, as the unit frequency. Let us introduce the
designations

é:r/bis §e=be/bi1
{i=a,/b,, {.=a,/b,
2=w/w,, Q,=w,fw,,

Q=wjo.=2-1-2,, Ql=w;/o?,

and the focusing parameter,
ﬂ = CU,-/COC.

Then Eq. (3.10) and the boundary conditions (3.11) may be
rewritten in the form

1 d( o L
X (’:(9 )dé)

I? 4.1.9. .
_(? (@) + ﬁ) =0 (312)
(-2) G "f)
Q2 dE
_1.{”5?’ 28
- l—c%f_sz,}m
(3.13)
(-0
Qz (f dé) $=¢
1 {521_*_@'2! Zﬁ
ARG Qs§§}g=¢,'
Here, in accordance with (3.4)-(3.6),
1 . 12
p=2(3+2 75 5)
Q) =05+ Bi&?, (3.14)
QUE=05+2p%E,  Q,=0Q-1-Q,.

By using rather simple transformations, the problem
(3.12)-(3.13) is reduced to the form (0.1).

For this problem it is sufficiently easy to determine an
initial point of the evolution. At § =10 the problem can be
solved analytically and yields four eigenvalues:

Q534=205{1+g,,} 7'

§ro=M+{M’—KK]"2
(€7+1)

M=05-(K+K,) SeT2)
( i+ e) (651_1)

1+£2l 621_‘_&'21’

K,= 1 _C’g.u K= fﬁl—iir

LEYMAN., LITVINTSEVA, AND RODIONOV

Thus, the eigenvalue sought in the problem (3.12)-(3.13)
is the normalized frequency of the perturbations, Qe C,
while the physical parameters are the focusing parameter,
B e R, the azimuthal wave number of perturbation, /e Z,
and the geometrical parameters: {;, {,, and £, (the radii of
internal and external electrodes, and the external beam
radius, respectively; {,, {,, £.€[0; +0)).

3.1.4. Numerical Aralysis

The formulated problem was solved by the MPE. For the
through-evolution across the bifurcation points (Fig. 5} the
prediction algorithm and the Algorithm 2 for evolution
curve branching were used. The main purpose of the study
was to determine how the stability of the configuration
under consideration depends on the focusing parameter §
defined by the charge of the internal electrode. From the
physical point of view, this parameter causes a shear of the
beam angular velocity: when §=0 the beam rotates as a
solid whole; and as the absolute value of § increases the
slippage of electron layers, and hence the relative velocities
of the boundary surfaces, grow. As a consequence of the
excitation of surface and volume waves, which carry
negative energy due to the relative motion of the electron
layers and their possible beam interaction, instability may
occur [ 35].

By analogy with plane geometry [ 32], we should expect
two kinds of instability in this problem. The first is caused

Reflg,, Im(ly, Refl,,

0.4 4/_ _ 0.4
0 —

02 04 i i2p

/
9=

. Imfly,
£ =6
’_-——-"""--0'

\-.._ 08 1 120 B

/02 04-~. oa R B

-0.41, .
osf, /=4 0.8
0.4 - .

-

02 04~ K
; ~.08 1128

0.8 / /=5
0.4 e
0 ut”

/0204~.708 1 12 p
ﬁ.. -0

——— Refl,,,

——— Imflg,

FIG. 5. Curves of @ o(f) for f=1, .., 10 with {;=0.1, {,= 20, £, = 1.2,
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by the interaction of the perturbations at the beam
boundaries. This is known as the long wave diocotron
instability and may occur only for sufficiently long wave
perturbations because short waves on two opposite surfaces
of beam get out of resonance, a necessary condition for
beam instability.

In the case of cylindrical geometry, the wave length of the
azimuthal perturbation cannot exceed the length of the
circumference of the beam; the conditions for long wave
diocotron instability may be satisfied, if ever, for lower
modes only.

The second kind of instability, the gyroresonant or
magnetron instability [ 32, 361, is caused by the interaction
of one of the beam surfaces with an internal (resonant) elec-
tron layer. In plane geometry [ 32] this instability occurs for
the short wave length only. It should manifest itself in the
cylindrical geometry also, since curvature is not essential
with decreasing wave length. Thus, a signifcant difference
between the cylindrical and plane geometries should be
expected for the diocotron instability only, ie, for large
scale perturbations of lower mode type. Therefore, detailed
calculations were carried out only for the first 10 modes:
I=1,2, ., 10

It 1s natural to choose the focusing parameter f§, repre-
senting specific features of cylindrical geometry, as the
evolution parameter. The curves £2(f) constructed for each
value of [ are, to a certain degree, an analog of dispersion
curves because they also contain information about the
instability increment depending on the velocity shear. By
using these curves we may construct the dispersion function
£2(7) for each value of .

By proceeding from the formulation of problem
(3.12)—(3.13) we may show that the curves 2 _,=Q —0.5./
as a function of f must be asymmetric relative to the axis
f =0 (odd functions of §) and that the complex-conjugate
values must also be solutions. Hence, to determine
instability it is sufficient to consider the half-plane §>0
only.

The instability increment é=|Im Q,,|=|Im Q| and
Re 2, as a function of # are shown in Fig. 5 for values !

&
0.5} p=1.0
0.4}
G.3%
i
1
o2k ¢ P03
] 1
t 1
0.1¢ 4 po
| [
1 [
0123456789107
FIG. 6. Increment versus azimuthal wave number.
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FIG. 7. Threshold value f§, required for stabilizing the perturbation
depending on azimuthal wave number.

from | to 10 for the following geometric parameters:
{,=01,{,=20,¢(,=12.

The value f =0 corresponds to a negative charge on an
internal electrode, equal to the charge required to fill up the
space within the tube beam so that it would become a sohd
Brillouin beam rotating as a whole; in this case there is no
velocity shear in the tube beam. The value f=05
corresponds to zero charge on internal electrode so that the
latter may be removed, and the beam becomes hollow. For
/=1 there is the stability zone § € (0; 0.5) which monotoni-
cally narrows down with growing /! However, even for
!=10 it remains finite, f e (0; 0.26). The evolution of curve
topology in the instability zone for increasing / is shown in
Fig. 5: at /=6 the topology of curves in the § region under
consideration begins changing, while for /> 8 there appear
two zones corresponding to both the diocotron and the
gyroresonant instabilities.

By using these curves we construct the dispersion curves
Q) for different 8, i.e., for different cases of the beam
focusing. The functions &(/) for §=0.5 and f=10 are
given in Fig. 6. For §=0.5 ounly the long wave diocotron
instability may be observed in the considered interval of /,
while for §= 1.0 both instabilities are observed.

For practical purposes the threshold value £, required
for stabilizing the perturbation with given azimuthal wave
number / is of interest. It is shown in Fig. 7 for the above
noted geometry of the beam and the electrodes.

For > (0.5 the charge on internal electrode is positive; it
corresponds to instability for all /. On the contrary, when
B <05, ie, for negative charge on internal electrode,
sufficiently large scale perturbations may be stabilized.

Thus, it follows from the calculations given that in non-
vortex tube beams, like in essentially vortex beams [31],
the charge of the internal electrode defines the stability of

the beam against lower modes of azimuthal perturbations
{({<10).

3.2. Vortex Isorotational Beam

321, Introduction

Tsorotational beams of charged particles are cylindrical
beams homogeneously rotating with respect to a lon-
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gitudinal axis. Such beams may be obtained, for example,
by injection from the gun region into the drift region
through a jump in the longitudinal magnetic field strength,
as in the formation of a Brillouin flow beam [ 7]. If the den-
sity and, hence, current of this beam are below limiting
values corresponding to the Bursian-Pavlov instability
threshold [35], the only instabilities occurring in it may be
caused by a nonhomogeneity of the hydrodynamic velocity
ficld [33]. Since the beam rotation is homogeneous, the
diocotron instability due to nonhomogeneity of the trans-
verse velocity component is impossible. Thus, only the
mstability caused by nonhomogeneous longitudinal
velocity, usually called the slipping-instability [37], may
occur in such a beam.

However, the slipping-instability of both compensated
[37] and noncompensated [ 38] electron beams have been
studied so far only in the case of their strong magnetization,
when the drift approximation may be applied and the
plasma-to-cyclotron frequency ratio is a small parameter in
the problem. Isorotational beams, however, may be formed
so that this ratio will exceed unity—it is determined by the
value and the sign of the magnetic flux through the emitting
surface of the cathode [7].

The main purpose of this section is to study the
hydrodynamic stability of isorotational beams without
imposing the dnft approximation.

The study is carried out within the potential approxima-
tion; i.e, the relative velocity field is assumed to be non-
relativistic. Even in this approximation, a resulting equation
for the complex amplitude of the helical wave of the poten-
tial perturbation with corresponding boundary conditions
cannot be fully analysed mathematically by approximate
analytical methods [ 39]. Calculational curves for the basic
characteristics of the instability as functions of different
parameters were therefore obtained by the MPE. These cur-
ves may be used for estimating the transverse dimensions
and the critical current of an extended beam.

3.2.2. Equations Describing the Stationary State

A general sketch of the axisymmetrical isorotational
beam is given in Fig. 8. In cylindrical coordinates (7, ¢, z)
with the unit vectors (e,, e, e, ), respectively, the z axis
coincides with the symmetry axis of the nonperturbed
beam. The equations system of one-velocity electron
hydrodynamics for nonrelativistic motion of particles in the
potential electric field is

Ov/0t+ (v-grad)v= —(g/m} grad @ + (g/mc) - [vx H],
dnfot + div(n - v) =0, (3.15)
Vip=—4.1n-q-n

Here v={(v,, v, v.) is the hydrodynamic velocity vector,
H=(0,0, H) is the strength wvector of the external
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Electron beam

DOrift wube

Axial velocity profile Azimuthal velocity profile

FIG. 8. Isorotational beam.

homogeneous magnetic field, & is the electric field potential,
n is the electron density, and ¢ is the speed of light {absolute
units are used).

For axisymmetric beams Bush’s theorem is valid [7];
consequently, given that §/8¢f =0 and J/0¢ =0, the system
of equations (3.15) has the motion integral

where /. is the magnetic flux through a so-called “liquid”
circle contour on the cathode surface with the centre on the
symmetry axis, which consists of the beam particles and
moving with them it becomes of radius r in the beam drift
region; t(r) is the magnetic flux through the same “liquid”
contour in the drift region. Since the magnetic field in the
drift region is longitudinal and homogeneocus, the angular
velocity of the beam rotation is

we=—05.w, (1 —s), (3.16)

where . is the cyclotron frequency, s=y_ /iy i1s the
parameter of the cathode shield against the external
magnetic field. Here v, and  are the full magnetic fluxes
through the beam cross section on the cathode surface and
in the drift region, respectively, It is obvious that e, = const
only when s = const, which is assumed henceforth. This con-
dition can be satisfied, for example, by introducing a beam
of constant radius into the drift region through a jump in
the longitudinal magnetic field strength, as occurs in
Brillouin beam formation [7]. The parameter s may take
negative values if the longitudinal magnetic field changes
both in value and direction at the jump (reverse focusing).

By substituting the expression (3.16} into the first equa-
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tion of system (3.15), which is the equilibrium condition for
the stationary beam, we obtain

(g/m) - grad dy= —025 -r-@?-(1—s%). (3.17)

Considering conservation of energy, we obtain for an equi-
potential cathode

v, = {02+ 05-r* w?. 5. (1—5)} 17

(3.18)

where v, is the beam velocity on the axis. Further, by sub-
stituting the expression (3.17) into the Poisson equation we
find that

w2=05 w2 (1 —s?), (3.19)

where w,, is the plasma frequency. From {3.19) it is seen that
the parameter s cannot exceed unity in modulus.

Thus, the expressions (3.16)—3.19) describe the station-
ary state of the isorotational beam under consideration.

3.2.3. Formulation of the Spectral Boundary Value Problem

Now we linearize Eqgs. (3.15) near the considered station-
ary solution describing a nonperturbed beam in the drift
tube, all the parameters of which depend on r only. To do
this we present the functions in the equations as a sum of
their nonperturbed values and perturbations:

V=V0(r) +V|(r, @, 2, f),

45:@%’—)4-@1(}", (Py Z: f), (320)

n= no(r) + nl(r9 @,z l)s

where the lower indices 0 and 1 refer, respectively, to the
nonperturbed values and perturbations.

The desired perturbations may be presented in the form
of helical harmonics of the normal wave, i.e.,

a)(ry @,z t)=a(r) exp{ —i-(wr—lp —k,z}}, (3.21)

where d(r) is a complex amplitude of the helical wave of per-
turbation of respective quantity, « is the wave frequency, /
and k. are, respectively, azimuthal and axial wave numbers.

By substituting the expressions (3.20} into (3.15),
linearizing the latter with respect to the perturbations and
presenting the perturbations in the form (3.21), we express
the amplitude &(r) of all desired parameters in terms of the
amplitude of the potential (to simplify the writing we further
omit the tilde above the quantities). Thus we obtain
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W, ! w dao
v,=1 4 ( T P —)
m \w,—w., r w,—w;, dr
q o, ! w,, dao
be="" ( 2 2 P—— s
m \w;—w,, T wi—wi, dr
k, o, w,, ! w dod
UZ:i 2 —£. 2 _. P+ e,
m R w, Wi—w,, r w.—ws, dr

wen. 2 li(,,;d_‘p)
T m \r dr\ w?—w? dr

Loz

Here we have following nomenclature:

w,=w—lw,—k, vy, is the Doppler shift frequency;

o, ={g/mc) - H is the cyclotron frequency vector;

@, =w,+ curl v, is the vortex vector.

By substituting the expression for the beam density
amplitude into the Poisson equation (the third equation in
the system {3.15)) we reduce the linearized system to a

single equation for the complex amplitude of the helical
wave of perturbation. As a result, we have

1 d 1 w} e
rar|” wi—wl) dr

(3.22)

The requirements that the desired solution be zero at the
beam boundary, r =5 (Fig. 8) and finite on the beam axis,
r=0,1e,

(3.23)

are chosen as the boundary conditions. They correspond to
the case when the gap between the beam surface and the
drift tube is negligibly small as compared with all other
dimensions.

3.2.4. Numerical Analysis
Let us introduce the following designations:
&=r/b; v=[o/(c0.- b)]*

A=wfo,; =k, b
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Then the spectral boundary value problem (3.22)—(3.23) in
dimensionless variables may be presented in the form:

1 d ¢.(1 af dd
eelo(ae) ]

sz
+(1_a—g).32
! saua§(3af—sz)}¢
E a2(a? —s5%)?

D(0)=B(1) =0,

(3.24)

where

a;=0.5-(1—s%),
a,=A—05-1-(1—=5)—f- (v+05.%(1 —s))'72,

. Es-(1—s)
T2 (04058251 —5))
I= ) 2: 35 -y ﬁE(+w, —’@),

se[0; 1], ve[0; +0).

The formulated spectral boundary value problem can be
investigated thoroughly by using numerical methods. Such
an investigation was carried out by the MPE. Now we
discuss the physical results obtained.

The purpose of calculations was to obtain curves for basic
instability characteristics depending on parameters that
determine the initial beam equilibrium or the type of
perturbation.

In Figs.9 and 10 the dimensionless increment of
instability, = [Im /|, and the real part of the frequency,
Re 4, are shown, respectively, versus the longitudinal wave
number £ for s =0.5, v= 1.0, and eight values of azimuthal
wave number /=1, 2, ..., 8. For all / the increment reaches a
maximum in the region of f-values corresponding to
instability. Although the curves are nonsymmetric, their
maxima are located approximately in the middle of the

0.024
0.018
£.012

©.008

0.0 A .
29 16 12 -0.8 04

BOO

FIG. 9. Instability increment depending on axial wave number:
5=0350v=10;/=1,..,8
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Re A
1.5

1.2

-2.0 -1, -1.2 -0.8

F1G. 10. Real part of frequency depending on axial wave number:
s=05v=10;1=1, .., 8

instability region, which corresponds to qualitative picture
of most vigorously growing perturbations.

The instability increment § depending on the cathode
shielding parameter s in the interval (0; 1) for v =1.0 and
wave number £=05.8* where [*=05.7.(1-sY
(v4+0.125 -s(1 —5)}'2, is given in Fig. 11 for different
{=1, .., 8 From this figure it is seen that the increment
reduces to zero at the ends of this interval and reaches a
maximum approximately in its middle, which corresponds
to the magnetic field strength ~1.2. H_, , where H_, is the
least magnetic field strength, which is necessary for the con-
finement of an electron beam of required density {Brillouin
vaiue). Thus, at the formation of stable beams similar to the
ones under consideration we should clicose the magnetic
fields whose values are at least two times greater than the
Brillouin value, as is usually done in practice.

Figure 12 shows the real part of frequency Re 2 versus the
parameter s for the same values of all the other parameters.

For each value of azimuthal wave number { there is an
mfinite number of higher order modes corresponding to the
roots u,, of the /th-order Bessel functions with growing ».
The higher modes are given in Figs. 13-16 for several initial
values of n. The dispersion curves d(f) and Re A(f) are
given, respectively, in Figs. 13 and 14 for s=0.5 and v=1.0
while /=1 and n=1, 2, 3, 4, It may be seen that for each
mode the behavior of the curve is approximately the same;

0.0 0.2 0.4 0.6 0.8 1.0 .

FIG. 11, Instability increment depending om cathode shielding
parameter: #=05-8%0v=10;/=1, .., 8.
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0o oz 0.4 08 08 1.0

FIG. 12. Real part of frequency depending on cathode shielding
parameter: f=05 - v=10;/=1,.,8.

-0.24 -0.20 -0.16

FIG. 13. Curves of 8(f) for higher modes: s=035; v=10; I=1;
n=1,2734

FIG. 14. Curves of Re A(#) for higher modes: s=0.5; »=10; I=1;
n=123,4.

0.0 0.2 G.4 0.6 0.8 1.0

FIG. 15. Higher mode increments versus parameter s: §=0.5-§*;
v=10/=1;n=12734.
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FIG. 16. Curves of Re A(s) for higher modes: §=035-%v=1.0;/=1;
n=12734

if the curves Re A(f) nearly coincide, the increment values
decrease with growing n. In this manner, the lower mode
will be the most dangerous among those considered. The
same conclusion follows from an analysis of the curves for
the same values given in Figs. 15 and 16, depending on the
parameter sat £=05 . f* v=10for/=1landn=1,2, 3,4

Figures 17 and 18 show the increment § and the real part
of the frequency versus parameter v at s=0.5 and f=
05-B*fori=1,.,8 and n=1. As a growth of v 1s equiv-
alent to a decrease in the beam perveance and density, it is
natural that a reduction in the increment for all /is observed
(Fig. 17). The real part of the frequency seems to decrease
due to diminishing angular velocity.

Thus, instability of noncompensated beams of charged
particles due to nonhomogeneity of longitudinal velocity
(slipping instability ) has been studied first without imposing
the drift approximation constraints, ic., for any degree of
cathode shielding against the external magnetic field.

The obtained quantitative dependences of basic
instability characteristics on the beam parameters and the
perturbation are of practical interest and may be used in the
design calculations and assessments.

It is usual that in practice the magnetic field uwsed for
beam maintenance in the drift tube is chosen approximately

3
0.041

0.02
0.02 275
2
3
0.01
J—— A hal
0 65 1.0 15 20 25 3.0 35

FIG. 17. Instability increment depending on parameter v: §=0.5. *;

s=051=1, .,8.
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FIG. 18. Curves of Re i(v): f=05.8*s5=05;/=1, ... &

/

equal to double the Brillouin ficld. According to this
analysis, such an empirical choice is quite reasonable
because it corresponds to the stable state of the beam.

14.
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